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A vortex particle method for the simulation of axisymmetric viscous flow is pre-
sented. The flow is assumed to be laminar and incompressible. The Navier—Stokes
equations are expressed in an integral velocity-vorticity formulation. The inviscid
scheme is based on Nitsche’'s method for axisymmetric vortex sheets. Meanwhile,
two techniques are proposed for dealing with the viscous term. The first uses an
integral Green’s function method while the second is based on a diffusion velocity
approach. Both are obtained by extension of existing methods for 2D flows. The
problem of satisfying boundary conditions along the axis of symmetry is specifically
addressed. The problem is solved by using cut-off functions that are derived from
the Green'’s function of the axisymmetric diffusion equation. The scheme is applied
to simulate the evolution of vortex rings at intermediate Reynolds number. The pro-
cesses of entrainment and wake formation are evident in the calculations, as well as
the extension of the support of vorticity due to viscous diffusio, 1999 Academic Press
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1. INTRODUCTION

In this paper, we present a numerical method for the simulation of unbounded axis)
metric viscous incompressible flows. Our method is based on a Lagrangian particle
cretization. The advantage of the method is that it is well suited for the computation
slightly viscous, unbounded, or external flows. The introduction of viscous diffusion in vc
tex methods has been widely studied in the last 20 years. Many different techniques |
been proposed and succesfully applied since the pioneering work by Chorin [6]. Basic:
there are three main classes of algorithms: the firstincludes random-walk techniques, w
are based on the analogy between Brownian motion and the effect of viscous diffusior
vortex particles. The second class [5, 7] of methods is based on an integral approxi
tion of the diffusion operator. The third class of methods uses the so-called “diffusi
velocity” approach. In this case the diffusion operator is, following algebraic manipulatic
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2 RIVOALEN AND HUBERSON

written as a convection operator and a single transport equation for the particles is so
[11, 9].

The extension of these methods to axisymmetric flows is faced with several difficulti
which require significant modification of the 2D algorithms on which the extension is bas
Thus very few attempts have been made in that direction up to now, and only two meth
have been significantly developed.

The first method is based on splitting of the (axisymmetric) diffusion operator into tv
parts: the first part consists of a Laplacian and is thus similar to the usual 2D diffusi
operator. A random-walk method is used to simulate this term. The second partis accou
for in an explicit, “deterministic” fashion. This approach has been successfully applied
both external and internal flows; see, e.g., Martins and Ghoniem [13].

The second approach consists of introducing an axisymmetric flow assumption into a
method in order to reduce the computational cost. This has been done for vortex filam
[1,17, 18], as well as particles. Although there is no account for viscous diffusion in the
calculations, the extension of the integral method of [5, 7] is straightforward in that ce
and should be considered as a possible alternative. The use of the 3D diffusion velc
method [24] can also be envisaged.

In the present work, we will not consider the case of solid boundaries and will focus
the following three items:

¢ the extension of the 2D diffusion velocity and integral methods to the axisymmet
case;

¢ the treatment of external boundary conditions for unbounded flows;

¢ the treatment of boundary condition along the axis of symmetry.

The integral approximation for the diffusion operator is obtained using the Green’s functi
of the axisymmetric diffusion equation and the conservative scheme of Choquin [5]. T
diffusion velocity formulation is then obtained by an algebraic manipulation of the diffusic
operator.

In the diffusion velocity method the external, far-field boundary conditions are aut
matically satisfied. On the other hand, the boundary conditions on the axis of symme
provide a challenge. From this point of view, there is a basic difference between the 2D |
plane problem and the axisymmetric meridian plane problem. The main difficulty lies
the computation of a smooth approximation of the velocity field close to the axis [20]. Tt
problem is tackled by following an approach similar to the smoothing technique of Nitsc
and Krasny [20]. Specifically, we first obtain a Green’s function of the diffusion equatic
which satisfies the conditions on the axis of symmetry and use this Green'’s function in ¢
structing a regularization kernel. The present situation differs from the vortex sheet st
of Nitsche and Krasny since we are dealing with a distributed (viscous) vorticity field.

The scheme is used to compute the evolution of vortex rings at intermediate Reync
number. Computed results are used to illustrate some of the properties of the diffus
velocity model and to check its accuracy by comparison with previously published solutio
The results also highlight the importance of proper treatment of conditions on the a:
especially when the vorticity support extends towards it.

2. THE PARTICLE METHOD FOR INVISCID AXISYMMETRIC FLOWS

If the azimuthal component of the velocity is zero, the vorticity field is organized as
set of circular vortex filaments or vortex rings. The governing equations can be writt
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Equation (1) is a transport equation fowhich is derived from the vorticity transport
equation. For inviscid flows, it represents a pure convective equation similar to the vortic
transport equation for two-dimensional flows. Althoudghk no longer conserved for viscous
flow, it underlies most of the existing vortex particle method for axisymmetric flows [13
Since there is no dependence on ¢heoordinate of the velocity and vorticity field, the
computational domain reduces to @nz) plane for one selected value®f{Fig. 1). In this
representation of the flow, the vortex rings are described as a single point which is tl
intersection with the selected meridional plane. For inviscid flowsgtegquation can be
easily interpreted thanks to Kelvin and Helmholtz theorems; since the circulation is cons
along any vortex filament, any increase of the vortex ring radius must be accompaniec
an increased vorticity.

An integral relation between the velocity field and the vorticity field can also be used
is based on the the expression of the velocity at a given gnia} induced by the vortex
ring with circulationl'y located at the pointrg, zp),
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FIG. 1. Schematic sketch of the geometry for a circular vortex ring.
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where/C and€ are first and second order elliptic functions, respectively, and

4rrg

k
(r +19)2 + (z2— 20)?

(6)

is the argument.

It must be pointed out that these expressions are undefiried af) where the velocity is
singular. In the case of a pure two-dimensional flow, an easy way to remove the singula
at least from a physical point of view, consists of considering that a point vortex actue
represents a small blob of uniformly distributed vorticity. This technique can be read
transposed to axisymmetric flows although the result will be slightly different since tl
limit of the velocity at(rg, zp) is non-zero. The problem of determining the velocity of a
vortex ring with a small core radiusand a uniform vorticity distribution has been addresset
by Lamb [15] who found the expression

~ I 8 1
Uz(Fo, Zo) ~ 47_[?0{|09(;0> - 4}. 7)

When using this expression, one must keep in mind that the point vortices are now consid
as approximations of a vortex torus. Forincompressible flows, the torus volume has torer
constant so that the core radias,must be a function of the ring radiug, we have

[ T
o = Tzro, (8)

where7 is the volume of the torus. The numerical simulation of axisymmetric flows b
means of particles can be reduced to computing the evolution of a finite number of vo
structures which are alternatively considered as vortex rings or vortex torus. The met
based on the idea that particles are material elements has been shown by Raviart [23
Cottet [8] to be second-order accurate for 2D flows.

Using this kind of discretization yields a singular velocity field at the center of eac
vortex ring. A desingularised approximation of the velocity induced by a set of vortex rin
has been proposed by Nitsche [20]. The three-dimensional smoothing function used is
radially symmetric algebraic smoothing

3 1
H(B) = Ei(ﬂz n 1)5/2. (9)
We also set
_1. (B
Hy(B) = 53H<5>’ (10)

where$ is the core radius. Thug{s is a 3D radially symmetric regular function of unit
mass, whose limit a&— 0 is the Dirac measure.

Inserting the smoothing parametein the expression for the Stokes streamfunctjon
yields

I
s (F, 2,70, 20) = ﬁ(m + oK) — ER)), (11)
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where

A = (p2 = p1)/(p2 + p1),
pF = (2—20)* + (r —10)* + 67,

and
P35 = (2 — 20)? + (r +10)* + 862

The velocity corresponding to the above streamfunction distribution is

Iod
U (1. 2,10, 20) = —2 2P ¢ 210, 20) (12)
r o0z
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Usz(r, Z, To, Zg) = f%(r, zZ, 19, 2p), (13)
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On the axisy =0, these expressions have the finite limits

usr (0, z, r )—FO rg
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This leads to a set of ordinary differential equations for the location of the particles whi
will be defined by their two coordinatés, z) and their circulatior’,

)3/2 ) u52(07 Z, r07 ZO) = O (17)

dr;

T _p

dt

dri

a=Zj:u5r(ri,zi,rj,zj) (18)
dz

a = Zuaz(riaziar]’zj)‘
J

3. THE DIFFUSION ALGORITHMS

3.1. Introduction

In this section, we are interested in the numerical simulation of the viscous diffusion
vorticity. In order to simplify the presentation, we consider a simple diffusion equatio
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which can be regarded as a fractional step resulting from the splitting of the problem i

a convective part
2(2Yyv.u(?) =0 (19)
at\r r)

Ba)_v 82w+82w w+18a)
ot~ \ar2  9z2 r2 roar )

and a diffusion part

(20)

(We shall not actually use such a splitting in the present work.) Thus we only focus on
solution of Eq. (20). This is a diffusion equation for which a boundary condition is require
all around the computational domain. Because the particle method is able to deal \
unbounded domains, we only consider unbounded flow and that the computational dor
is the half-plane > 0. There are boundary conditions at infinity which are automaticall
satisfied as long as the particles remain confined to a bounded part of this plane. S
attention has to be paid to the boundary conditions along the axis. From the regularit
the velocity field on the axis,

Ur - 0
21
o, (21)
ar
the following condition is obtained for the vorticity:
au au
w=——-—2=0. (22)
a0z ar

The z axis is a material line where the vorticity flux across this line is non-zero. The le:
of circulation is given directly using the relation

dr /*Oo dw 4 1)

—_— = =) R —

dt oo \Or T
which in turn has no obvious reason to be zero in the discrete formulation. This result |
problem when solving the vorticity transport equation since the axis is at the same tin
region where the quantityis difficult to compute, due to the smallness or nullity gand

a region where there may be an apparent vorticity production. This production is said tc
“apparent” because it can only be an artifact of the numerical formulation.

dz (23)

r=0

3.2. The Strength Exchange Model

A first way to solve the diffusion problem is to make use of the explicit solution arisin
from heat transfer theory. The main difference between our approach and the correspon
one in the thermal diffusion problem is that our boundary condition along the axis
meaningless from a thermal point of view [3]. An easy way to obtain the solution with ti
right boundary condition is to extend the problem to the whole space, that is, to compute
solution even in the < 0 part of the space, and to use the antisymmetric initial conditior
The problem to be solved consists of the diffusion equation (20), with initial condition
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We use separation of variables in order to reduce our problem to an ordinary differer
equation. For a circular vortex ring of circulatidly that is concentrated at poif, z) at
timet =0, we asume that the solution can be expressed as

271l r24r2 4 (z— z0)?
o, 2, t) = 2100 (_ Tt (2= %)

(Amtv)3/2 4ty >}—(r’ v (24)

and find that the functiotf(r, t) is the modified Bessel function of first ord€r. We
have now the explicit solution of the diffusion problem of an axisymmetric flow with inite
condition specified before,

2wl (r —ro)?+ (2 — 2,)? o o
a)(r,Z,t)—WeXp(— 4ty exp —E I]_ E . (25)

This solution is used to solve the vorticity diffusion equation with the formulation use
in [5]. The extension of the integral formulation of the diffusion operator is obtained t
replacing the 2D Green function by (25),

2nrow(Fo, Zo, t F =124 (2 — 2.)2
w(r,z,t+At):/L°§‘;) (=1’ + (2 2)
s (4rAtv)¥ 4Aty

Mo Iro
— I —— . 2
XexD( 2Atv> 1(2Atv)dr0dzo (26)
S is the support ofv in the half plane(r, z). The use of this solution within a particle
method requires some care in order to preserve the global conservation of the vorti
(see the Appendix). In particular the flux of vorticity along thaxis should be taken into
account by using Eq. (23).

The discrete form of Eq. (26) is readily obtained following the analysis proposed in [
we have

2
(4r Atv)3/2

2
Fit+ At) = Fi(t)<1— exp(—42tv>> +Z(FJ‘FJ’S] —ni0Sy)
j#

(i —1)?+(z —z))? T rrj
XeXp< 4Aty P\ = 2atw ) P\ 2810 )0 @D

The first term on the right hand side of Eq. (27) corresponds to the circulation of particl
after a small amount of vorticty has been dissipated on the axis according to Eq. (23).
second term represents the exchange of circulation between particles and itis straightfor
to verify that this part conserves the total circulation provided the particles cover the wh
half plane. Also notice that the use of a symmetric cut off function would have led to t
necessity of having particles covering the whole plane, even for negafives sheds light
on the problem which can be encountered when satisfying the boundary condition al
the axis.

3.3. The Diffusion Velocity Model

3.3.1. Convective formulation of the diffusion equatioGonvective analogues for dif-
fusion have been extensively used for building humerical algorithms. The method cons
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of a transformation of the convection-diffusion equation into a pure convection equatio

d

v wruxk=0 (28)
It is not obvious whether this transformation is always possible. The problem is that |
resulting equation must be equivalent to the initial one. This can be easily achieved
2D flows and has been demonstrated by many authors [9, 11]. In the case of axisymm
flows, additional algebraic manipulation is required. At first, we write the right hand si
of Eq. (20) in a divergence form. We have

9% 9% 30t

St sty =V r2v(r3)). (29)

The convective form in (28) is then readily obtained using

U, = _U(V(gﬁ. (30)
reg

Considering now Egs. (28) and (30), it can be observed that the extension of the vorti
support is automatically accounted for by the particles since the diffusion velocity will |
large in the external region, due to the smallness of the vorticity. This will obviously le:
to an increased inter-particle distance and the phenomenon can be interpreted as rot
analogous to the use of a coarser mesh in the outer region for grid methods. The use c
diffusion velocity will lead to the definition of a pseudo “constant weight” method in th

sense that this property is only true foand during the integration of Eq. (28).

3.3.2. Computation of the diffusion velocityl he problem to be addressed in this sectior
is that of the particle discretization of Eq. (30). First, we can write this equation in term
the vorticity w; we have

v/dw w dw
Uv: vry Upz) = —— | — |- 31
(Uvr, Uh2) a)<8r+r 8z> (31)

Thus it is necessary to define a continuous vorticity field in the plar® as well as its
derivatives with respect toandz. Once again, the technique is based on what is done f
two- and three-dimensional particle methods. We start with the approximate identity,

w.(X) = / Fe(Xx = X)w(X) dv(X), (32)
v

whereF, is a smoothing function having the same properties/pfsee Eq. (10)).

The axisymmetric configuration makes it convenient to use a cylindrical coordinate s
tem(e, &, €). In our casev = w - & and the vorticity is computed in the half plane and
r > 0. In this coordinate system Eq. (32) takes the form

21
a)g(r,z)z/w(r’, z/)/ F.(p)cogo) dor’ dr’ dz, (33)
s 0

whereS is the semi-infinite meridional plane apdis the distance between a point in the
half plane(r, z) and a pointinv,

p?=r2+1"%+ (z—7)* - 2rr’ cog0). (34)
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The possibility to derive an analytical solution for the integral is directly related to the choi
for F.. We illustrate the method by using the second-order, three-dimensional Gaus:
smoothing

, 1 Ix — x'|?
Fe(x—X) = (22372 exp(— o2 ) (35)

We then substitute Eq. (35) into Eq. (33) and isolate all the terms which do not depenc
6. We have

we(r, 2) = /((r2)3/2 expl=(r® + 1%+ (z—2)%/&?1J(r,r)r' dr' dz, (36)
where
2
j(r,r’):/ cog6) exp(2 cogo)rr’/e?) do. (37)
0
The result of the last integral is
T,y =2ml2rr'/e?). (38)

Thus Eq. (33) becomes

we(r,2) = /( ,2)3/2exp[—(r2+r’2+(z—z’)z)/sz]I1(2rr’/32)2nr/dr’dz’. (39)

Discretizing the surfac& using particles with" =w(r’, Z) dr’ dZ, we obtain a discrete
form for the local vorticity

000 =3 EI0 el (2412 - 2) (/) (@0
i=1

for which we deduce the final form of the Gaussian smoothing function for axisymmet
flow

R § (Z — 2%+ (rj —r)?2 2rir 2rir
Ge(r,z,ri,z) = Vo) exp(— 2 > exp(—g—)Il( ) (41)

Then we get

0 (r,2) =Y i - Gor, 2,13, 7). (42)

i=1

The functiong, is the product of the one-dimensional Gaussian smoothing function far th
coordinate and the one-dimensional axisymmetrical Gaussian function foctioedinate.
Then

Ge(r, 2,10, 20) = G (Z, 20)Gre (1, To) (43)
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with
_ 1 (20— 2)?
G2:(2, 20) = NET eXp<—82> (44)
and
2
Gre(r,T0) = — eXp<—(r082r)> exp(—?g)&(if). (45)

The use of non-symmetric functions for theeomponent (45) does not respect the usua
moment conditions for the core functions used in particle method [2]. Using the ser
development fog, . [16] it is straightforward to verify that

/grg(r,ro)rzdr =rg (46)
S

irrespective of the value far. Then if we consider a vortex ringg, the total impulse |
associated with this ring is preserved,

I:n/wgrzdrdz:nr‘org. (47)
S
Using the same technique we can also verify that

2
ng(r, ro)dr=1- exp(—i%). (48)

There is no existing mathematical analysis of this problem so it has been conjectured
the construction of this function by using the solution of the diffusion equation should
second-order, as it is the case for the Gaussian function in 2D.

Note that the smoothing function (9) used to desingularize the velocity differs from t
Gaussian smoothing function used to estimate the vorticity field (35). This is purely forn
because both ands are smoothing parameters. Téefunction has been derived in order
to satisfy the boundary conditions, that is, zero vorticity on the axis.

Thus, there is no obvious mathematical relation betwsegamde; it has been found from
numerical experiments that= 26 provides comparable self-induced velocities. The selec
tion of two different functions has been made only in order to simplify the computation
work. The gradient of is obtained by a direct differentiation of Eq. (42). Thus, we get the
expressions

3“’6 —4rih (@ =2 e\ (2
I3 Z (\/_85) ( g2 )exp(— o2 )Il< o2 >
- 4ri2Fi (Z—22+(ri —r)? 2rir 2r (49)
2 e el ) ()

aa)£ _ 4ri(z — )T (zi —2)%+ (rj —r)? 2rir 2rir
Z ool - e 5 )n(5) e

which are then used in the evaluation of diffusion velocity.
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We will present the complete algorithm with the diffusion velocity method of Subsectic
3.3 because itleads to a somewhat simpler formulation. Putting together the equations w
have been established in Section 2 and Subsections 3.3.2 and 4.2, we obtain a corr
model for the Navier—Stokes problem:

dt ~ e P g2

dr;

dftl:Zuar(fi,Zi,fJ‘,Zj)+Uur(l’i,Zi,Fj,Zj) (51)
j

dz

at = Zu,;z(ri,zi,r,-,z,-)—i—uvz(ri,zi,r,-,zj).

J

The time integration scheme which will be used in the calculations is a 4th order accul
Runge—Kutta scheme.

4. DISCRETIZATION OF THE INITIAL CONDITION

4.1. Initial Conditions

In Section 5 the numerical scheme is applied to simulate viscous vortex rings. To initial
the computations, particles are distributed inside a torus section of radindl. concentric
circles and with one particle at the center of the section (Fig. 2). The distance between
neighboring circles i;\y =r,/(N; + 0.5) and the radius of the circle represented by the
particle at the center iAy/2. N, is the number of particles on the first circle and it
becomes R, for the second circle andN, for theith circle. Then the initial total number
of particles isN = Ny N¢(Nc 4+ 1)/2+ 1. The angle between two successive particles place
on the same circleis Ag; =27 /iNp. The same process of discretization is used by Kni

21,

FIG. 2. Initial positions of particles before merging and splitting algorithm in the cross section of the ring.
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TABLE |
Discretization Parameters for Axisymmetric and Norbury Sections

Case 1 Case 2 Case 3
Total number

Grid Section  (r,/R, Ny, No) of particles eo/R N &/R N &o/R N

1 Axisym.  (0.65, 4, 50) 5101 0.015 3401 0025 901 0.03 460
2 Axisym. (0.0, 2, 30) 931 0.004 344 0006 162 0008 84
3 Norbury (0.5, 4, 50) 5101 0.01 4249 0015 1697 002 846

and Ghoniem [14] to initialize the core section of 3D vortex ring. The initial geometric:
properties of particles are the position, z), the surfaceS =y; AyAg;, and then the
volume7Z; =2xr; §. An equivalent core radius is calculated on each particle:

| T
o= 27T2ri'

The same technigue is used to initialize a Norbury section [22] which defines a numer
family of steadily translating inviscid vortex rings. In Table | some initial conditions for thi
axisymmetric core and Norbury core are given. Starting from this initial configuration v
apply a merging and splitting algorithm for initial different values(iof, N,, N¢) and for
different values forg. This technique which is described in the next section is necesse
to ensure that the density of particles in all the sections is the same.

In Figs. 3 and 4, a set of nested particle distributions is presented. They are obtaine
applying the merging/splitting algorithm with increasisng

N, =4 N, =2

N, =50 N, =50
€0/ R = 0.015 o/t = 0.004
e/ R = 0.02 e/ R = 0.006
eg/ R = 0.030 : e/ R = 0.008

FIG. 3. Effect of the merging algorithm on two axisymmetric sections for different valueg. of
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Ny =4

N, =50

€o/R = 0.01

co/R = 0.015

eo/R = 0.020

FIG. 4. Effect of the merging algorithm on a Norbury section for three different valueg. of

4.2. Re-griding Procedure

The splitting-merging procedure has been designed in order to satisfy the conserve
for the total circulatiorl™ and the total impulse I [15] during the re-griding procedure,

F:/a)drdz
s

|=7r/a)r2drdz
S

The geometrical position of the center of particles is defined by the center of vorticity,

(52)

> Jsor?drdz 5 Jswr?zdrdz

- Jqwdrdz’ Jswr2drdz’ (53)

The discrete coordinate®, 2) are expressed in term of the coordinate of the particle
representing the equivalent vortex system,

(54)

(55)

In the calculations, a particle is split whenewer- 9. The procedure is applied for all
particles in the seb,

D={M(ri,z) / o > o}, (56)
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| |MIM_]| |

] |
tr t_

25 26

| ! T: = (0.25+ G /16/F )T,
i l L=fn-r
/ |

|

. | I

| Gi>e [ > |

i

. |

1

' o

| g

W e L,r‘*‘—,| 8
| ]

w

~t

I

Z+0if2

FIG.5. Merging (top) and splitting (bottom) of vortex particles.

whereD is the set of particle®; for which the core radius; is greater than the sizg. If
M; € D, it is split into four new particles.

Conversely, the merging of two particléd; and M; into one particle is performed
whenever distancgM; M; | feels belowey. The element pairs undergoing merging belong
to the set

A={(Mi,Mj) / M M| <eo). (57)

If this distance is large enough, we check that none of the condition defihiadulfilled

by the two patrticles. This is exactly the object of the condition. The twoBetad.A are
non-overlapping. This can be easily checked by considering once again the fluid volt
represented by each particle. Once one or two particles are found that belong to one o
two setsD and.A4, the splitting and merging operations are activated.

Applying relation (55) to our problem will lead to the following result: in case of merging
of two particles, {, 7, Iy, ﬁ) have to be computed whereas, (z;, I'j, 7;) j=1,4 have to be
computed inasplitting step (Fig. 5). Each particle has the same core radius and the circul:
is calculated to preserve the total circulation and the total impulse. The two procedures
performed simultaneously. Then, the merging and splitting criteria are checked once a
for all the particles and the process repeated until theRBetsd.A are empty. Finally we
have defined a geometrical and fixed paramejevhich is a representation of the optimal
value for the distance between two particles and for one particle core radius. It is usuz
vortex methods to choose the smoothing parandeter greater than the averaged distance
between two particles, in order to ensure the quality of the approximated velocity fielc
(57) and (56).

5. RESULTS

5.1. Validation Test

We analyse the effect of time steyt and discretization parameteg on the temporal
evolution of two different initial distributions of vorticity on the ring core:
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e The initial vorticity distribution in the(r, z) plane is a vortex ring with Gaussian
core section:

o =T exp—(L)?  with
= () (58)
y2 = (20— 2%+ (1o —1)2

In the thin tube approximation the vortex ring translation velocity is given by the asympto

expression
dZC I'o 8rg
Upge=—7=—1I — ] -C 59
z dt 47Tr0{og<0'o) }’ (59)

where C depends of vorticity distribution inside the core. For a Gaussian distributic
C=0.558, Eqg. (59) is valid as long as the core radigsremains small compared to
the tore radiusg. The core radius is fixed heredg/ro = 0.03 in all tests and the diffusion
process is not activated. In Fig. 6 the effectAdfis analyzed. The velocity of the vorticity
centroidU (t) = % whereZ is defined in Eq. (53) is compared to the asymptotic predictio
Ut = U,¢. The velocity oscillates a little in time and decreases when the timettEpR?

is biger than 0.004. Thecomponent of vorticity centroid (Eq. (53)) should remain constar
heref? is the ratio between the total impulse and the total circulation. The trajectory of t
vorticity centroid is represented in Fig. 7. The particle method preserves the total circt
tion. However, when the time step is too larged(004 here) Fig. 7 shows that the impulse
is not preserved because theomponent increases when the time step increases. The til
step is fixed now. In Fig. 8 the number of particles in the section is tested by changing
parameteky. To have a good representation of the section, the number of particles shc

0.04

AtT/R? = 0.002
At/R? = 0.004
AtT/R? = 0.008
0.03 AtD/R? = 0.01

0.02 | g

U(t) = U,
%Tth 001 |- .

-0.04 [ .

0 0.05 0.1 0.15 0.2
tT/R?

FIG. 6. Evolution of the core self induced velocity for different values of the time &t&p/R?. The initial
repartition of vorticity in the section is Gaussian. The initial distribution of the particle,i&R{ Ny, No) =
(0.08, 4, 50) andey/R = 0.005, §/R = 0.005.
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0.065 |
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0.015 |- X Pl .
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0.005 | K .

O 1 1 ] 1
1 1.00001 1.00002 1.00003 1.00004 1.00005

7/R
FIG. 7. Trajectory of the vorticity centroid for different values of the time stei"/R?, §/R = 0.005.
be greater than 300 and in that case there is no significant difference between comg

results of self induced velocity.
e Linear distribution of vorticity on Norbury section:

w
— =1 (60)
r
0.04 T T T T T T T
€0/ R = 0.004 e
eo/R = 0.005 e
eo/R = 0.006 e
0.03 - eo/R = 0.007 S
0.02 | 4
Ugt% —~ U
th 0.01 |
[}
-0.01 J
\ X
-0.02 - ! i
-0.03 | d
-0.04 | 4
0.05 . . . ) . . ) ) )
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

T/ R?

FIG. 8. Velocity of the vorticity centroid for different values of the size paramet¢R. The time step is
AtT'/R? = 0.004 ands/R = 0.005.
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FIG. 9. Velocity of the vorticity centroid of a Norbury section for different values of the time at&p/R?,
§/R = 0.03, andso/R = 0.022.

For different values of the time step the temporal evolution of the self-induced velocity
compared to the theoretical prediction in [22]. Figure 9 shows that when the time ste|
small enough AtI'/ R? < 0.200) the two results are very close. For too large time step tr
velocity is not large enough and like for a gaussian section when we plot the trajecton
the ring on Fig. 10 we can deduce that the impulse increases.

06 ; , : : : . . .

4 AtT/R? =0.078 N
AfL/R? = 0.155 V.
055 AtT'/R? = 0.311 .
* AtT'/R? = 0.622 e

0.5 : i

0.45 - S 4
Z/R 04 L

035 |- ’ B g

03 L |
025 - ] ]
02 |
0.15 |
01t ]

0.05 -

! 1 1 1 1 { 1 1

0
1.060850 1.060851 1.060852 1.060853 1.060854 1.060855 1.060856 1.060857 1.060858 1.060859 1.060860

/R

FIG.10. Trajectory of the vorticity centroid of a Norbury section for different values of the timesstép R2.
The initial distribution of the particle i&,, N, N;) = (0.5, 8, 30) andAtI'/R?. §/R = 0.03 andso/R = 0.022.
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5.2. A Pure Diffusion Problem

In order to check the validity of the diffusion algorithm alone, the following 1D probler
has been solved:

Jw 2o o 1w
— =y —= =+ =—). 61
ot 1)(E)rz r2+r8r) (61)

The particles are characterized by two parameters only: their loagatmal their circulation
I'i. Using the strength exchange model of Subsection 3.2 leads to the discrete problen

2
Fi(t—i-At):Fi(t)( —exp( 4Lt ))+Z(r TS —rhiS))
j#i

X exp —7(“_“)2 exp—rirj T fif)
4AtY 2Aty )M 2Atw

2Aty

62
dr (62)
dt
For the diffusion velocity model of Subsection 3.3, we get
dr; _ 4I'i2Fi ex ri2
dat = e P g2
(63)

dr' Zuur(r.,r ).

The initial conditions are the explicit vorticity distribution derived from Eq. (25) of Sub

section 3.2,
_ TR (r — R)? rr rR
a)(l‘, t) = E eXp( 4ty ) eXp(-E)Il (E) . (64)

The corresponding iso-vorticity surfaces are circular cylinders with @x¢9. At radius

R, the characteristic diffusion time is the raf®?/v. This ratio vanishes at= 0, leading

to an additional difficulty when diffusion close to the axis is strong. Expanding on the tin
discretization, it is possible for the vortex rings to cross the axis and penetrate the reg
of negative radius. This difficulty can be overcome by reducing the time step or increas
the order of the integration time scheme. Both procedures lead to an improvement in
accuracy of the particle trajectories.

Figures 11-13 show numerical results for the one-dimensional radial problem using
diffusion velocity model. Figure 11 show the evolution of the vorticity versus radius for tw
different cutoff numbers and three different instanrts-(0.06, ¢ = 0.12). The initial repre-
sentation(r;, I'}) for the different cases are the same. The comparaison with the analyti
results (64) shows that the cutafi=0.12 is too large to represent correctly the vorticity
field attv/ R? = 0.0225(L , error~ 6%), although the diffusion effect is well estimated for
larger time (, error~ 2%). When the cutoff is too smalt & 0.06), the distance between
particles is too large for larger time, resulting in an incorrect vorticity approximation ne
the axis. For a large range of cutoff-£ 0.03, ¢ = 0.18) the relative error estimate between
the computed and analytical results has been given for the total circulation and the impt



PARTICLE METHOD IN AXISYMMETRIC VISCOUS FLOW 19

wR?/T

TR/ R
aaealeg ool N
SEREREETEY
NN
ININIRIRING
IO
DIBNIDORINONG
DIBIIRINIDG
CCACTOCR

wR?/T
2

inniu

. L g
0 1 2 3 4 5 [

r/R

FIG.11. Numerical results of a pure one-dimensional axisymmetric diffusion. Evolution of vortieRj(I")
versus location of vortex particlés/R) at three different instants in time using the Diffusion Velocity Method.
These results are compared to the exact solution (solid line). The numerical parameters are the 2itng Bfeg:
0.005 and the cutoff numbey R = 0.06 (top) and:/R = 0.12 (bottom). The initial discretization {s,/R, N;) =
(0.9, 90). Then the total number of particles is 199.

The L, error on the vorticity filed has been also plotted. The cutoff should be evaluat
using the mean distance between two neighboring particles at large time. For the axis
metric case this distance can be very different for particles close to the axis and parti
with larger values of;. The cutoffe = 0.12 was selected as a good compromise to estima
correctly the lux of vorticity on the axid(t)) and respect the total impulse conservatior
(<1%) (Fig. 13).

The numerical results using the Strength Exchange Model have been plotted in Figs
and 15. Figure 14 represents the evolution of circulation on each particles compared
the vorticity integrated on the particl€ & wS). Here the particles are fixed and the initial
support of vorticity atv/R?=0.0225 extends from/R=0 tor/R=6: this was found
necessary for a large enough computation domain for the larger timB{= 0.5225). It
must be pointed out that for this pure diffusion problem, there is no particle displacem
when using the strength exchange model so the time step does not have too much effe
the computed solution (Fig. 15).

Both solutions are in good agreement with the exact solution (Figs. 13 and 16). T
impulse is conserved by the strength exchange model 15 whereas a 0.3% error has
obtained with the diffusion velocity model (Fig. 12).
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FIG. 12. Error on the impulse (top), the circulation (middle), and the naenon the vorticity field (bottom)
versus time for different cutoff numberusing the Diffusion Velocity Model. The over parameters are the same
as in Fig. 11.

In order to confirm that these properties still hold for 2D axisymmetric flows, the pu
diffusion of a vortex core has been considered using the diffusion velocity model. T
numerical results are plotted in Figs. 17 and 18. The extension of the vorticity dom
(Fig. 17) isillustrated by the evolution at three different times of the position of the particle
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FIG. 13. Numerical results of a pure one-dimensional axisymmetric diffusion using the Diffusion Veloci
Model. Evolution of the total circulationI{(t)/ I'o) and the impulsg]l (t)/1o) versus time(t). These results
are compared with the exact solution. The cutoff number0.12 and the other parameters are the same as i
Fig. 11.
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FIG. 14. Numerical results of a pure one-dimensional axisymmetric diffusion. Evolution of circulation o
each particleI(; / I'y) versus locationr(/ R) for three different instants in time using the Green’s Function Method
The time step is\tv/R? = 0.005 and 199 particles are distributed frofR = 0tor /R = 6. The circulation on
each particle is compared with the analytical vorticity integrated on the support of the paaticig) Ay; .
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FIG. 15. Erroronthe impulse (top), the circulation (middle), and the nbgron thecirculationfield (bottom)
versus time for a different time step using the Green’s Function Method. The over parameters are the same
Fig. 14.

There is a good agreement with the exact solution. The error for the circulation and the t
impulse is arround 1% and the error on the vorticity field is less than 0.1%.
5.3. The Viscous Vortex Ring Problem

For the Navier—Stokes problem solved in this section, only the diffusion velocity moc
has been computed using the diffusion velocity model. A lot of work has been done w
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FIG. 16. Numerical results of a pure one-dimensional axisymmetric diffusion using the Green’s Functi
Method. Evolution of the circulatioI’(t)/ ') and the impulsel((t)/lo) versus time(t). These results are
compared to the exact solution.

the vortex ring problem since the Helmholtz 1858 paper. Explicit solutions have be
obtained for the steady inviscid case with various core vorticity distribution [10]. TF
viscous unsteady case has been defined (Tung and Ting [28] and Saffman [25]). U
asymptotic methods on the energy argument, they obtained an explicit formula for the <
induced velocity decay due to vorticity diffusion. For a Gaussian core vorticity distributic
(58) and as long as the core raditg) = +/4vt remains small compared to the core radius

ro this velocity is
dz Io 8rg
Uzc at 47”0{ og(a(t)> 0 558} (65)

The numerical self-induced velocity can still be computed with formula (53). Equati
(58) is used to define the initial particles distribution. The vortex core at different time ste
is plotted in Fig. 19. The ring self-induced velocity is compared to the asymptotic soluti
of Saffman [25] in Fig. 20, which shows that the difference between the two predictions
less than 0.7%.

For intermediate Reynolds numbeRs(=TI"/v) the convection and diffusion terms in
Navier—Stokes equations are of equal magnitude. Figures 21 and 22 show the vort
field and the position of the particles fé&, =500. This initial condition is obtained at
t=tI'/R?=1115. Equation (25) has been used to derive the initial distribution of vorticit
in the core.

The evolution of the vorticity field with time could be compared with the computatior
of Stanawayet al. [27] which use similar initial conditions. The entrainment and wake
formation phase defined by Shariff and Leonard [26] are presented here. According to
“Saffman diffusion process” (pure core spreading) the volume of the core increases v
time due to the entrainment of external fluid (Fig. 22). But it's only in the later resul
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z/R | tw/R? = 0.03

z/R tv/R? = 0.1785

/R | tv/R? = 0.3285

r/R

FIG. 17. Numerical results of the pure diffusion of an axisymmetric vortex core. Position of particles at thr
instants in time. The initial distribution of vorticity is gaussian (Eq. (25)) and the initial condition is obtained
tv/R? = 0.03.(r,, Ny, No) = (0.9, 4, 80) (12971 particles) = 0.12, andstv/R? = 0.0015.
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the circulation, and the norrh, on the vorticity field versus time using the Diffusion Velocity Model (bottom).
The numerical parameters are the same as in Fig. 17.

that the wake formation phase can be observed as well as the formation of a tail (Fig
att =21.15) which decrease in intensity because of the diffusion effects. The formati
of the tail implies that vorticity is shed in the wake of the bubble where the intensity
significant. For particles in the tail with small circulation (there is no significant isovalt
of vorticity in this region), the fluid convection is not a dominant effect and their motion
mainly governed by diffusion. At this stage it can be expected that dissipation would app
according to Maxworthy’s predictions [19], although it has not been taken into account
the present work. In Fig. 23 we present the evolution of circulation and impulse ver:
time for two different cutoffse =0.12 ande = 0.06. In order to ensure the quality of the
approximation ofw, at any time during the computation, the particle number has be
increased up to 12,971. In this case the local relative error on the impulse is lower t
1.5% at the end of the simulation fer=0.06 and~7% fore =0.12.

6. CONCLUSION

In this paper, we have proposed an alternative method for the discretization of exte
axisymmetric flows. The two problems which have been more specifically addressed



26 RIVOALEN AND HUBERSON

0 02 04 06 08 1 12 14
FIG. 19. Location of the vortex particles in the, z) plane at different timesv/R? = 0.5 1074, 6.5 107(b),

12,5-107%(c), 18510°(d). (r,, Ny, No) = (0.04, 4, 40), §/R = 0.0025 ands = 2§, Atv/R? = 3107, and
r/v =10.

the derivation of a so-called deterministic algorithm for diffusion and the axis bounda
conditions. Besides this, all the well known qualities of the particle method, namely vortic
conservation and easy modelling of unbounded flows, have been preserved. A partic
problem concerning viscous flow representation by integral approximation is that the infir
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FIG. 20. Evolution of the core self induced velocity of vorticity centroid. The numerical result is compared
the asymptotic solution of Saffmaf.,, N, No) = (0.04, 4, 40), §/R = 0.0025 and: = 25, Atv/R?* = 3-10°°,
andl'/v = 10.
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FIG. 21. \orticity field at several instants in time fdR, =500. The initial condition is obtained at=
1115 (r,, Np, Ng) = (0.7, 4,50), §/R = 0.06, ands = 25. The time step itI'/R? = 0.1. The isovalue levels
are the same in all plots. The increment step is 0.02 for levels from 0.02 to 0.18 and after the levels are 0.2 t
with increment step of 0.2.
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FIG. 22. Evolution of the particles position fdt/v = 500. The initial conditions are= 11.15, §/R = 0.06,
ande = 2.
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FIG. 23. Evolution of circulation and impulse versus time for two different cutefts 0.06,¢ = 0.12, and
I'/v = 500.

computational domain has to be covered by the particles. The diffusion velocity method |
the random vortex method overcomes this difficulty by a constant adaptation of the partic
location to the extension of the vorticity support. The main advantage of our method re
in the treatment of the axisymmetric diffusion equations which is resolved in a one s
procedure.

Although a lot of interesting problems can be studied within the axisymmetric flo
framework, we plan now to complete our method in two directions: the introduction of ti
azimuthal component of the velocity and the introduction of turbulence models.

APPENDIX

Integral Solution for the Axisymmetric Diffusion Equation
We want to solve the diffusion problem for 3D vorticity,
dw 2w w  Pw
ot ax2  9y2 09z
w(X, 0) = we(X)

(66)

for which an integral solution is

X=X+ (y—Y)+(@z-27)°
4t

w(Xx, t) = /wo(x/) exp dx' dy dz. (67)
JV

(4mrvt)3/2

A discrete solution using the particle discretisation can be obtained according to [5],

1 y X —X)Z+ i — Y2+ (@ — z))

2
e D, (68
(47 vt)3/2 P 4vt +Di. (68)

Q=) (V- V)
i
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where
Qi =/ w(x, t)ydxdydz

Vi = dx dydz (69)

D= /R / , )3/2

(X—X)2+(y—y)2+(2—2’)2
4ut

x exp dx'dy dZdxdydz

For axisymmetric flows, the vorticity expressed in a cylindrical coordinate system redu
to

and satisfies the diffusion equation

w 92w n 92w n ldw
(L 2« 2% @
9z2  ar2 ror r2

i —

The elementary solution for this equation is

2rr’ r —r)2 4 (z—2)? rr’ rr’
r,zr',zZ;t) = ———exp| — expl —5— )T — :
G ya( ) (4 vt)3/2 p( 4pt P vt )7\ 20t

In order to account for the axisymmetric asumption, the computational domain is discreti
in a set of torug/; with sectionS;. The appliction of the previous method leads to

Fi(t+At):/ § /w(r/,z;t)g itz r', Z; tydr'dZ
i) /S
—/ E /w(r, z )G zi(r.z, ', Z5t)dr' dZ
i j S

t+At
—/ d/ (', Z;t)dr' dZ dr, (70)
Rx R+

wherew is the part of the vorticity field corresponding to the diffusion of the vorticity
initially in S;:

a(r, z;t) =/ (', Z; ADG 45,z 1, Z; t)dr' dZ.
The last term can be rewritten

tHAL g t+At
/ / o', Z; t)dr’ dz’dr_/ —v/ < )
t RxR*

dz dr.
r=0
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Using the particles approximation and the expressiomfgields

T (t + At)
= TiSGmai(ti- 2.1, 2j; A = 118G mar (V. 2y, 1, i3 Ab)
j

dr
r=0

t+At 00 P 1
+/ vFi(t)/ a—rgm(ri,a,r, z; r)+;9m(ri,zi,r, z;t)dz
t —00

riz 2
=T) (l _ E‘Xp<——)> + Z(rj T OS —riL (t)Sj)

32
4Atv Z (4 Atv)
i —r)’+ @ —2z)? rir; rir;
exp| — exp| — 7z .
x p( 4Aty P 2Aty )M\ 2Aty
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