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A vortex particle method for the simulation of axisymmetric viscous flow is pre-
sented. The flow is assumed to be laminar and incompressible. The Navier–Stokes
equations are expressed in an integral velocity-vorticity formulation. The inviscid
scheme is based on Nitsche’s method for axisymmetric vortex sheets. Meanwhile,
two techniques are proposed for dealing with the viscous term. The first uses an
integral Green’s function method while the second is based on a diffusion velocity
approach. Both are obtained by extension of existing methods for 2D flows. The
problem of satisfying boundary conditions along the axis of symmetry is specifically
addressed. The problem is solved by using cut-off functions that are derived from
the Green’s function of the axisymmetric diffusion equation. The scheme is applied
to simulate the evolution of vortex rings at intermediate Reynolds number. The pro-
cesses of entrainment and wake formation are evident in the calculations, as well as
the extension of the support of vorticity due to viscous diffusion.c© 1999 Academic Press
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1. INTRODUCTION

In this paper, we present a numerical method for the simulation of unbounded axisym-
metric viscous incompressible flows. Our method is based on a Lagrangian particle dis-
cretization. The advantage of the method is that it is well suited for the computation of
slightly viscous, unbounded, or external flows. The introduction of viscous diffusion in vor-
tex methods has been widely studied in the last 20 years. Many different techniques have
been proposed and succesfully applied since the pioneering work by Chorin [6]. Basically,
there are three main classes of algorithms: the first includes random-walk techniques, which
are based on the analogy between Brownian motion and the effect of viscous diffusion on
vortex particles. The second class [5, 7] of methods is based on an integral approxima-
tion of the diffusion operator. The third class of methods uses the so-called “diffusion
velocity” approach. In this case the diffusion operator is, following algebraic manipulation,
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written as a convection operator and a single transport equation for the particles is solved
[11, 9].

The extension of these methods to axisymmetric flows is faced with several difficulties,
which require significant modification of the 2D algorithms on which the extension is based.
Thus very few attempts have been made in that direction up to now, and only two methods
have been significantly developed.

The first method is based on splitting of the (axisymmetric) diffusion operator into two
parts: the first part consists of a Laplacian and is thus similar to the usual 2D diffusion
operator. A random-walk method is used to simulate this term. The second part is accounted
for in an explicit, “deterministic” fashion. This approach has been successfully applied to
both external and internal flows; see, e.g., Martins and Ghoniem [13].

The second approach consists of introducing an axisymmetric flow assumption into a 3D
method in order to reduce the computational cost. This has been done for vortex filaments
[1, 17, 18], as well as particles. Although there is no account for viscous diffusion in these
calculations, the extension of the integral method of [5, 7] is straightforward in that case
and should be considered as a possible alternative. The use of the 3D diffusion velocity
method [24] can also be envisaged.

In the present work, we will not consider the case of solid boundaries and will focus on
the following three items:

• the extension of the 2D diffusion velocity and integral methods to the axisymmetric
case;
• the treatment of external boundary conditions for unbounded flows;
• the treatment of boundary condition along the axis of symmetry.

The integral approximation for the diffusion operator is obtained using the Green’s function
of the axisymmetric diffusion equation and the conservative scheme of Choquin [5]. The
diffusion velocity formulation is then obtained by an algebraic manipulation of the diffusion
operator.

In the diffusion velocity method the external, far-field boundary conditions are auto-
matically satisfied. On the other hand, the boundary conditions on the axis of symmetry
provide a challenge. From this point of view, there is a basic difference between the 2D half
plane problem and the axisymmetric meridian plane problem. The main difficulty lies in
the computation of a smooth approximation of the velocity field close to the axis [20]. This
problem is tackled by following an approach similar to the smoothing technique of Nitsche
and Krasny [20]. Specifically, we first obtain a Green’s function of the diffusion equation
which satisfies the conditions on the axis of symmetry and use this Green’s function in con-
structing a regularization kernel. The present situation differs from the vortex sheet study
of Nitsche and Krasny since we are dealing with a distributed (viscous) vorticity field.

The scheme is used to compute the evolution of vortex rings at intermediate Reynolds
number. Computed results are used to illustrate some of the properties of the diffusion
velocity model and to check its accuracy by comparison with previously published solutions.
The results also highlight the importance of proper treatment of conditions on the axis,
especially when the vorticity support extends towards it.

2. THE PARTICLE METHOD FOR INVISCID AXISYMMETRIC FLOWS

If the azimuthal component of the velocity is zero, the vorticity field is organized as a
set of circular vortex filaments or vortex rings. The governing equations can be written
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as

∂ξ

∂t
+ ur

∂ξ

∂r
+ uz

∂ξ

∂z
= 0 (1)

∂2ψ

∂z2
+ ∂

2ψ

∂r 2
− 1

r

∂ψ

∂r
= −rω, (2)

whereur anduz are the radial and streamwise velocity components, respectively,ω is the
vorticity, ξ≡ ω/r , andψ is the streamfunction distribution, related to the velocity through

uz = 1

r

∂ψ

∂r
(3)

ur = −1

r

∂ψ

∂z
. (4)

Equation (1) is a transport equation forξ which is derived from the vorticity transport
equation. For inviscid flows, it represents a pure convective equation similar to the vorticity
transport equation for two-dimensional flows. Althoughξ is no longer conserved for viscous
flow, it underlies most of the existing vortex particle method for axisymmetric flows [13].
Since there is no dependence on theθ coordinate of the velocity and vorticity field, the
computational domain reduces to an(r, z) plane for one selected value ofθ (Fig. 1). In this
representation of the flow, the vortex rings are described as a single point which is their
intersection with the selected meridional plane. For inviscid flows, theξ -equation can be
easily interpreted thanks to Kelvin and Helmholtz theorems; since the circulation is constant
along any vortex filament, any increase of the vortex ring radius must be accompanied by
an increased vorticity.

An integral relation between the velocity field and the vorticity field can also be used. It
is based on the the expression of the velocity at a given point(r, z) induced by the vortex
ring with circulation00 located at the point(r0, z0),

uz(r, z, r0, z0) = 00

2π((r + r0)2+ (z− z0)2)1/2

[
K(k)− (z− z0)

2+ r 2− r 2
0

(r − r0)2+ (z− z0)2
E(k)

]
(5)

ur (r, z, r0, z0) = −00(z− z0)

2πr ((r + r0)2+ (z− z0)2)1/2

[
K(k)− r 2

0 + r 2+ (z− z0)
2

(r − r0)2+ (z− z0)2
E(k)

]
,

FIG. 1. Schematic sketch of the geometry for a circular vortex ring.
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whereK andE are first and second order elliptic functions, respectively, and

k ≡ 4rr 0

(r + r0)2+ (z− z0)2
(6)

is the argument.
It must be pointed out that these expressions are undefined at(r0, z0)where the velocity is

singular. In the case of a pure two-dimensional flow, an easy way to remove the singularity,
at least from a physical point of view, consists of considering that a point vortex actually
represents a small blob of uniformly distributed vorticity. This technique can be readily
transposed to axisymmetric flows although the result will be slightly different since the
limit of the velocity at(r0, z0) is non-zero. The problem of determining the velocity of a
vortex ring with a small core radiusσ and a uniform vorticity distribution has been addressed
by Lamb [15] who found the expression

ũz(r0, z0) ≈ 00

4πr0

{
log

(
8r0

σ

)
− 1

4

}
. (7)

When using this expression, one must keep in mind that the point vortices are now considered
as approximations of a vortex torus. For incompressible flows, the torus volume has to remain
constant so that the core radius,σ , must be a function of the ring radius,r0; we have

σ =
√
T

2π2r0
, (8)

whereT is the volume of the torus. The numerical simulation of axisymmetric flows by
means of particles can be reduced to computing the evolution of a finite number of vortex
structures which are alternatively considered as vortex rings or vortex torus. The method
based on the idea that particles are material elements has been shown by Raviart [23] and
Cottet [8] to be second-order accurate for 2D flows.

Using this kind of discretization yields a singular velocity field at the center of each
vortex ring. A desingularised approximation of the velocity induced by a set of vortex rings
has been proposed by Nitsche [20]. The three-dimensional smoothing function used is the
radially symmetric algebraic smoothing

H(β) = 3

4π

1

(β2+ 1)5/2
. (9)

We also set

Hδ(β) = 1

δ3
H
(
β

δ

)
, (10)

whereδ is the core radius. Thus,Hδ is a 3D radially symmetric regular function of unit
mass, whose limit asδ→ 0 is the Dirac measure.

Inserting the smoothing parameterδ in the expression for the Stokes streamfunctionψ

yields

ψδ(r, z, r0, z0) = 00

2π
(ρ1+ ρ2)(K(λ)− E(λ)), (11)
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where

λ = (ρ2− ρ1)/(ρ2+ ρ1),

ρ2
1 = (z− z0)

2+ (r − r0)
2+ δ2,

and

ρ2
2 = (z− z0)

2+ (r + r0)
2+ δ2.

The velocity corresponding to the above streamfunction distribution is

uδr (r, z, r0, z0) = −00

r

∂ψδ

∂z
(r, z, r0, z0) (12)

uδz(r, z, r0, z0) = 00

r

∂ψδ

∂r
(r, z, r0, z0), (13)

where

∂ψδ

∂z
(r, z, r0, z0) = (z− z0)

(
1

ρ1

∂ψδ

∂ρ1
+ 1

ρ2

∂ψδ

∂ρ2

)
(14)

∂ψδ

∂r
(r, z, r0, z0) = r − r0

ρ1

∂ψδ

∂ρ1
+ r + r0

ρ2

∂ψδ

∂ρ2
(15)

and

∂ψδ

∂ρ1
= 1

2π

(
K(λ)− 1

2

(
1+ ρ2

ρ1

)
E(λ)

)
,

(16)
∂ψδ

∂ρ2
= 1

2π

(
K(λ)− 1

2

(
1+ ρ1

ρ2

)
E(λ)

)
.

On the axis,r = 0, these expressions have the finite limits

uδr (0, z, r0, z0) = 00

2

r 2
0(

(z− z0)2+ r 2
0 + δ2

)3/2 , uδz(0, z, r0, z0) = 0. (17)

This leads to a set of ordinary differential equations for the location of the particles which
will be defined by their two coordinates(ri , zi ) and their circulation0i ,

d0i

dt
= 0

dri

dt
=
∑

j

uδr (ri , zi , r j , zj ) (18)

dzi

dt
=
∑

j

uδz(ri , zi , r j , zj ).

3. THE DIFFUSION ALGORITHMS

3.1. Introduction

In this section, we are interested in the numerical simulation of the viscous diffusion of
vorticity. In order to simplify the presentation, we consider a simple diffusion equation,
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which can be regarded as a fractional step resulting from the splitting of the problem into
a convective part

∂

∂t

(
ω

r

)
+∇ · U

(
ω

r

)
= 0 (19)

and a diffusion part

∂ω

∂t
= ν

(
∂2ω

∂r 2
+ ∂

2ω

∂z2
− ω

r 2
+ 1

r

∂ω

∂r

)
. (20)

(We shall not actually use such a splitting in the present work.) Thus we only focus on the
solution of Eq. (20). This is a diffusion equation for which a boundary condition is required
all around the computational domain. Because the particle method is able to deal with
unbounded domains, we only consider unbounded flow and that the computational domain
is the half-planer > 0. There are boundary conditions at infinity which are automatically
satisfied as long as the particles remain confined to a bounded part of this plane. Some
attention has to be paid to the boundary conditions along the axis. From the regularity of
the velocity field on the axis,

ur = 0
(21)

∂uz

∂r
= 0,

the following condition is obtained for the vorticity:

ω = ∂ur

∂z
− ∂uz

∂r
= 0. (22)

Thez axis is a material line where the vorticity flux across this line is non-zero. The leak
of circulation is given directly using the relation

d0

dt
= −ν

∫ +∞
−∞

(
∂ω

∂r
+ ω

r

)∣∣∣∣
r=0

dz (23)

which in turn has no obvious reason to be zero in the discrete formulation. This result is a
problem when solving the vorticity transport equation since the axis is at the same time a
region where the quantityξ is difficult to compute, due to the smallness or nullity ofr , and
a region where there may be an apparent vorticity production. This production is said to be
“apparent” because it can only be an artifact of the numerical formulation.

3.2. The Strength Exchange Model

A first way to solve the diffusion problem is to make use of the explicit solution arising
from heat transfer theory. The main difference between our approach and the corresponding
one in the thermal diffusion problem is that our boundary condition along the axis is
meaningless from a thermal point of view [3]. An easy way to obtain the solution with the
right boundary condition is to extend the problem to the whole space, that is, to compute the
solution even in ther < 0 part of the space, and to use the antisymmetric initial condition.
The problem to be solved consists of the diffusion equation (20), with initial conditions.
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We use separation of variables in order to reduce our problem to an ordinary differential
equation. For a circular vortex ring of circulation00 that is concentrated at point(r0, z0) at
time t = 0, we asume that the solution can be expressed as

ω(r, z, t) = 2πro0o

(4π tν)3/2
exp

(
−r 2+ r 2

o + (z− zo)
2

4tν

)
F(r, t) (24)

and find that the functionF(r, t) is the modified Bessel function of first order,I1. We
have now the explicit solution of the diffusion problem of an axisymmetric flow with inital
condition specified before,

ω(r, z, t) = 2πro0o

(4π tν)3/2
exp

(
− (r − ro)

2+ (z− zo)
2

4tν

)
exp

(
− rr o

2tν

)
I1

(
rr o

2tν

)
. (25)

This solution is used to solve the vorticity diffusion equation with the formulation used
in [5]. The extension of the integral formulation of the diffusion operator is obtained by
replacing the 2D Green function by (25),

ω(r, z, t +1t) =
∫

S

2πroω(ro, zo, t)

(4π1tν)3/2
exp

(
− (r − ro)

2+ (z− zo)
2

41tν

)
× exp

(
− rr o

21tν

)
I1

(
rr o

21tν

)
dro dzo. (26)

S is the support ofω in the half plane(r, z). The use of this solution within a particle
method requires some care in order to preserve the global conservation of the vorticity
(see the Appendix). In particular the flux of vorticity along thez axis should be taken into
account by using Eq. (23).

The discrete form of Eq. (26) is readily obtained following the analysis proposed in [5];
we have

0i (t +1t) = 0i (t)

(
1− exp

(
− r 2

i

41tν

))
+
∑
j 6=i

(r j0 jSi − ri0iS j )
2π

(4π1tν)3/2

× exp

(
− (ri − r j )

2+ (zi − zj )
2

41tν

)
exp

(
− ri r j

21tν

)
I1

(
ri r j

21tν

)
. (27)

The first term on the right hand side of Eq. (27) corresponds to the circulation of particlei
after a small amount of vorticty has been dissipated on the axis according to Eq. (23). The
second term represents the exchange of circulation between particles and it is straightforward
to verify that this part conserves the total circulation provided the particles cover the whole
half plane. Also notice that the use of a symmetric cut off function would have led to the
necessity of having particles covering the whole plane, even for negativer . This sheds light
on the problem which can be encountered when satisfying the boundary condition along
the axis.

3.3. The Diffusion Velocity Model

3.3.1. Convective formulation of the diffusion equation.Convective analogues for dif-
fusion have been extensively used for building numerical algorithms. The method consists
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of a transformation of the convection-diffusion equation into a pure convection equation,

∂ξ

∂t
+∇ · (U+ Uν)ξ = 0. (28)

It is not obvious whether this transformation is always possible. The problem is that the
resulting equation must be equivalent to the initial one. This can be easily achieved for
2D flows and has been demonstrated by many authors [9, 11]. In the case of axisymmetric
flows, additional algebraic manipulation is required. At first, we write the right hand side
of Eq. (20) in a divergence form. We have

∂2ξ

∂r 2
+ ∂

2ξ

∂z2
+ 3

r

∂ξ

∂r
=∇ · (r−2∇(r 2ξ)). (29)

The convective form in (28) is then readily obtained using

Uν = −ν (∇(r
2ξ))

r 2ξ
. (30)

Considering now Eqs. (28) and (30), it can be observed that the extension of the vorticity
support is automatically accounted for by the particles since the diffusion velocity will be
large in the external region, due to the smallness of the vorticity. This will obviously lead
to an increased inter-particle distance and the phenomenon can be interpreted as roughly
analogous to the use of a coarser mesh in the outer region for grid methods. The use of the
diffusion velocity will lead to the definition of a pseudo “constant weight” method in the
sense that this property is only true forξ and during the integration of Eq. (28).

3.3.2. Computation of the diffusion velocity.The problem to be addressed in this section
is that of the particle discretization of Eq. (30). First, we can write this equation in term of
the vorticityω; we have

Uν = (uνr , uνz) = − ν
ω

(
∂ω

∂r
+ ω

r
,
∂ω

∂z

)
. (31)

Thus it is necessary to define a continuous vorticity field in the plane(r, z) as well as its
derivatives with respect tor andz. Once again, the technique is based on what is done for
two- and three-dimensional particle methods. We start with the approximate identity,

ωε(x) =
∫

V
Fε(x− x′)ω(x′) dv(x′), (32)

whereFε is a smoothing function having the same properties ofHδ (see Eq. (10)).
The axisymmetric configuration makes it convenient to use a cylindrical coordinate sys-

tem(er , eθ , ez). In our caseω=ω · eθ and the vorticity is computed in the half plane and
r > 0. In this coordinate system Eq. (32) takes the form

ωε(r, z) =
∫

S
ω(r ′, z′)

∫ 2π

0
Fε(ρ) cos(θ) dθr ′ dr ′ dz′, (33)

whereS is the semi-infinite meridional plane andρ is the distance between a point in the
half plane(r, z) and a point inV ,

ρ2 = r 2+ r ′2+ (z− z′)2− 2rr ′ cos(θ). (34)
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The possibility to derive an analytical solution for the integral is directly related to the choice
for Fε. We illustrate the method by using the second-order, three-dimensional Gaussian
smoothing

Fε(x− x′) = 1

(πε2)3/2
exp

(
−|x− x′|2

ε2

)
. (35)

We then substitute Eq. (35) into Eq. (33) and isolate all the terms which do not depend on
θ . We have

ωε(r, z) =
∫

S

ω(r ′, z′)
(πε2)3/2

exp[−(r 2+ r ′2+ (z− z′)2)/ε2]J (r, r ′)r ′ dr ′ dz′, (36)

where

J (r, r ′) =
∫ 2π

0
cos(θ) exp(2 cos(θ)rr ′/ε2) dθ. (37)

The result of the last integral is

J (r, r ′) = 2π I1(2rr ′/ε2). (38)

Thus Eq. (33) becomes

ωε(r, z) =
∫

S

ω(r ′, z′)
(πε2)3/2

exp[−(r 2+ r ′2+ (z− z′)2)/ε2] I1(2rr ′/ε2)2πr ′ dr ′ dz′. (39)

Discretizing the surfaceS using particles with0=ω(r ′, z′) dr ′ dz′, we obtain a discrete
form for the local vorticity

ωε(r, z) =
n∑

i=1

2π0i r i

(πε2)3/2
exp
[−(r 2+ r 2

i + (z− zi )
2
)/
ε2
]
I1
(
2rr i

/
ε2
)

(40)

for which we deduce the final form of the Gaussian smoothing function for axisymmetric
flow

Gε(r, z, ri , zi ) = 2ri

(
√
πε3)

exp

(
− (zi − z)2+ (ri − r )2

ε2

)
exp

(
−2ri r

ε2

)
I1

(
2ri r

ε2

)
. (41)

Then we get

ωε(r, z) =
n∑

i=1

0i · Gε(r, z, ri , zi ). (42)

The functionGε is the product of the one-dimensional Gaussian smoothing function for thez
coordinate and the one-dimensional axisymmetrical Gaussian function for thezcoordinate.
Then

Gε(r, z, r0, z0) = Gzε(z, z0)Gr ε(r, r0) (43)
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with

Gzε(z, z0) = 1√
πε2

exp

(
− (z0− z)2

ε2

)
(44)

and

Gr ε(r, r0) = 2r0

ε2
exp

(
− (r0− r )2

ε2

)
exp

(
−2r0r

ε2

)
I1

(
2r0r

ε2

)
. (45)

The use of non-symmetric functions for ther component (45) does not respect the usual
moment conditions for the core functions used in particle method [2]. Using the series
development forGr ε [16] it is straightforward to verify that∫

S
Gr ε(r, r0)r

2 dr = r 2
0 (46)

irrespective of the value forε. Then if we consider a vortex ring00, the total impulse I
associated with this ring is preserved,

I = π
∫

S
ωεr

2 dr dz= π00r
2
0 . (47)

Using the same technique we can also verify that∫
S
Gr ε(r, r0) dr = 1− exp

(
− r 2

0

ε2

)
. (48)

There is no existing mathematical analysis of this problem so it has been conjectured that
the construction of this function by using the solution of the diffusion equation should be
second-order, as it is the case for the Gaussian function in 2D.

Note that the smoothing function (9) used to desingularize the velocity differs from the
Gaussian smoothing function used to estimate the vorticity field (35). This is purely formal
because bothε andδ are smoothing parameters. TheGε function has been derived in order
to satisfy the boundary conditions, that is, zero vorticity on the axis.

Thus, there is no obvious mathematical relation betweenδ andε; it has been found from
numerical experiments thatε= 2δ provides comparable self-induced velocities. The selec-
tion of two different functions has been made only in order to simplify the computational
work. The gradient ofω is obtained by a direct differentiation of Eq. (42). Thus, we get the
expressions

∂ωε

∂r
+ ωε

r
=

n∑
i=1

−4rr i0i

(
√
πε5)

exp

(
− (zi − z)2+ (ri − r )2

ε2

)
exp

(
−2ri r

ε2

)
I1

(
2ri r

ε2

)

+
n∑

i=1

4r 2
i 0i

(
√
πε5)

exp

(
− (zi − z)2+ (ri − r )2

ε2

)
exp

(
−2ri r

ε2

)
I0

(
2ri r

ε2

)
(49)

∂ωε

∂z
=

n∑
i=1

4ri (zi − z)0i

(
√
πε5)

exp

(
− (zi − z)2+ (ri − r )2

ε2

)
exp

(
−2ri r

ε2

)
I1

(
2ri r

ε2

)
(50)

which are then used in the evaluation of diffusion velocity.
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We will present the complete algorithm with the diffusion velocity method of Subsection
3.3 because it leads to a somewhat simpler formulation. Putting together the equations which
have been established in Section 2 and Subsections 3.3.2 and 4.2, we obtain a complete
model for the Navier–Stokes problem:

d0i

dt
= −ν 4r 2

i 0i

ε4
exp

(
− r 2

i

ε2

)
dri

dt
=
∑

j

uδr (ri , zi , r j , zj )+ uνr (ri , zi , r j , zj ) (51)

dzi

dt
=
∑

j

uδz(ri , zi , r j , zj )+ uνz(ri , zi , r j , zj ).

The time integration scheme which will be used in the calculations is a 4th order accurate
Runge–Kutta scheme.

4. DISCRETIZATION OF THE INITIAL CONDITION

4.1. Initial Conditions

In Section 5 the numerical scheme is applied to simulate viscous vortex rings. To initialize
the computations, particles are distributed inside a torus section of radiusrv onNc concentric
circles and with one particle at the center of the section (Fig. 2). The distance between two
neighboring circles is1y= rv/(Nc + 0.5) and the radius of the circle represented by the
particle at the center is1y/2. Np is the number of particles on the first circle and it
becomes 2Np for the second circle andi Np for thei th circle. Then the initial total number
of particles isN= NpNc(Nc+ 1)/2+ 1. The angle between two successive particles placed
on the same circlei is1ϕi = 2π/ i Np. The same process of discretization is used by Knio

FIG. 2. Initial positions of particles before merging and splitting algorithm in the cross section of the ring.
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TABLE I

Discretization Parameters for Axisymmetric and Norbury Sections

Case 1 Case 2 Case 3
Total number

Grid Section (rv/R, Np, Nc) of particles ε0/R N ε0/R N ε0/R N

1 Axisym. (0.65, 4, 50) 5101 0.015 3401 0.025 901 0.03 460
2 Axisym. (0.06, 2, 30) 931 0.004 344 0.006 162 0.008 84
3 Norbury (0.5, 4, 50) 5101 0.01 4249 0.015 1697 0.02 846

and Ghoniem [14] to initialize the core section of 3D vortex ring. The initial geometrical
properties of particles are the position(ri , zi ), the surfaceSi = yi1y1ϕi , and then the
volumeTi = 2πri Si . An equivalent core radiusσi is calculated on each particle:

σi =
√
Ti

2π2ri
.

The same technique is used to initialize a Norbury section [22] which defines a numerical
family of steadily translating inviscid vortex rings. In Table I some initial conditions for the
axisymmetric core and Norbury core are given. Starting from this initial configuration we
apply a merging and splitting algorithm for initial different values of(rv, Np, Nc) and for
different values forε0. This technique which is described in the next section is necessary
to ensure that the density of particles in all the sections is the same.

In Figs. 3 and 4, a set of nested particle distributions is presented. They are obtained by
applying the merging/splitting algorithm with increasingε0.

FIG. 3. Effect of the merging algorithm on two axisymmetric sections for different values ofε0.
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FIG. 4. Effect of the merging algorithm on a Norbury section for three different values ofε0.

4.2. Re-griding Procedure

The splitting-merging procedure has been designed in order to satisfy the conservation
for the total circulation0 and the total impulse I [15] during the re-griding procedure,

0 =
∫

S
ω dr dz

(52)

I = π
∫

S
ωr 2 dr dz.

The geometrical position of the center of particles is defined by the center of vorticity,

r̃ 2 =
∫

Sωr 2 dr dz∫
Sω dr dz

, z̃=
∫

Sωr 2z dr dz∫
Sωr 2 dr dz

. (53)

The discrete coordinates(r̃ , z̃) are expressed in term of the coordinate of the particles
representing the equivalent vortex system,

r̃ =
√√√√∑ j r 2

j 0 j∑
j 0 j

, z̃=
∑

j r 2
j zj0 j∑

j r 2
j 0 j

(54)

0̃ =
∑

j

0 j . (55)

In the calculations, a particle is split wheneverσi >ε0. The procedure is applied for all
particles in the setD,

D = {Mi (ri , zi ) / σi > ε0}, (56)
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FIG. 5. Merging (top) and splitting (bottom) of vortex particles.

whereD is the set of particlesMi for which the core radiusσi is greater than the sizeε0. If
Mi ∈D, it is split into four new particles.

Conversely, the merging of two particlesMi and M j into one particle is performed
whenever distance|Mi M j | feels belowε0. The element pairs undergoing merging belong
to the set

A = {(Mi ,M j ) / |Mi M j |<ε0}. (57)

If this distance is large enough, we check that none of the condition definingD is fulfilled
by the two particles. This is exactly the object of the condition. The two setsD andA are
non-overlapping. This can be easily checked by considering once again the fluid volume
represented by each particle. Once one or two particles are found that belong to one of the
two setsD andA, the splitting and merging operations are activated.

Applying relation (55) to our problem will lead to the following result: in case of merging
of two particles, (̃r i , z̃i , 0̃i , T̃i ) have to be computed whereas (r j , zj , 0 j , T j ) j=1,4 have to be
computed in a splitting step (Fig. 5). Each particle has the same core radius and the circulation
is calculated to preserve the total circulation and the total impulse. The two procedures are
performed simultaneously. Then, the merging and splitting criteria are checked once again
for all the particles and the process repeated until the setsD andA are empty. Finally we
have defined a geometrical and fixed parameterε0 which is a representation of the optimal
value for the distance between two particles and for one particle core radius. It is usual in
vortex methods to choose the smoothing parameterδ or ε greater than the averaged distance
between two particlesε0 in order to ensure the quality of the approximated velocity field
(57) and (56).

5. RESULTS

5.1. Validation Test

We analyse the effect of time step1t and discretization parameterε0 on the temporal
evolution of two different initial distributions of vorticity on the ring core:
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• The initial vorticity distribution in the(r, z) plane is a vortex ring with Gaussian
core section:  ω = 00

πσ 2
0

exp−( y
σ0

)2
with

y2 = (z0− z)2+ (r0− r )2.
(58)

In the thin tube approximation the vortex ring translation velocity is given by the asymptotic
expression

Uzc= dzc

dt
= 00

4πr0

{
log

(
8r0

σ0

)
− C

}
, (59)

whereC depends of vorticity distribution inside the core. For a Gaussian distribution
C= 0.558, Eq. (59) is valid as long as the core radiusσ0 remains small compared to
the tore radiusr0. The core radius is fixed here toσ0/r0= 0.03 in all tests and the diffusion
process is not activated. In Fig. 6 the effect of1t is analyzed. The velocity of the vorticity
centroidU (t)= dz̃

dt wherez̃ is defined in Eq. (53) is compared to the asymptotic prediction
Uth≡Uzc. The velocity oscillates a little in time and decreases when the time step1t0/R2

is biger than 0.004. Thẽr component of vorticity centroid (Eq. (53)) should remain constant
here.r̃ 2 is the ratio between the total impulse and the total circulation. The trajectory of the
vorticity centroid is represented in Fig. 7. The particle method preserves the total circula-
tion. However, when the time step is too large (>0.004 here) Fig. 7 shows that the impulse
is not preserved because ther component increases when the time step increases. The time
step is fixed now. In Fig. 8 the number of particles in the section is tested by changing the
parameterε0. To have a good representation of the section, the number of particles should

FIG. 6. Evolution of the core self induced velocity for different values of the time step1t0/R2. The initial
repartition of vorticity in the section is Gaussian. The initial distribution of the particle is (rv/R, Np, Nc)=
(0.08, 4, 50) andε0/R= 0.005, δ/R= 0.005.
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FIG. 7. Trajectory of the vorticity centroid for different values of the time step1t0/R2, δ/R= 0.005.

be greater than 300 and in that case there is no significant difference between computed
results of self induced velocity.
• Linear distribution of vorticity on Norbury section:

ω

r
= 1. (60)

FIG. 8. Velocity of the vorticity centroid for different values of the size parameterε0/R. The time step is
1t0/R2 = 0.004 andδ/R= 0.005.
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FIG. 9. Velocity of the vorticity centroid of a Norbury section for different values of the time step1t0/R2,

δ/R= 0.03, andε0/R= 0.022.

For different values of the time step the temporal evolution of the self-induced velocity is
compared to the theoretical prediction in [22]. Figure 9 shows that when the time step is
small enough (1t0/R2< 0.200) the two results are very close. For too large time step the
velocity is not large enough and like for a gaussian section when we plot the trajectory of
the ring on Fig. 10 we can deduce that the impulse increases.

FIG. 10. Trajectory of the vorticity centroid of a Norbury section for different values of the time step1t0/R2.
The initial distribution of the particle is(rv, Np, Nc) = (0.5, 8, 30) and1t0/R2. δ/R= 0.03 andε0/R= 0.022.
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5.2. A Pure Diffusion Problem

In order to check the validity of the diffusion algorithm alone, the following 1D problem
has been solved:

∂ω

∂t
= ν

(
∂2ω

∂r 2
− ω

r 2
+ 1

r

∂ω

∂r

)
. (61)

The particles are characterized by two parameters only: their locationri and their circulation
0i . Using the strength exchange model of Subsection 3.2 leads to the discrete problem

0i (t +1t) = 0i (t)

(
1− exp

(
− r 2

i

41tν

))
+
∑
j 6=i

(r j0 jSi − ri0iS j )
1

21tν

× exp

(
− (ri − r j )

2

41tν

)
exp

(
− ri r j

21tν

)
I1

(
ri r j

21tν

)
(62)

dri

dt
= 0.

For the diffusion velocity model of Subsection 3.3, we get

d0i

dt
= −ν 4r 2

i 0i

ε4
exp

(
− r 2

i

ε2

)
(63)

dri

dt
=
∑

j

uνr (ri , r j ).

The initial conditions are the explicit vorticity distribution derived from Eq. (25) of Sub-
section 3.2,

ω(r, t) = 0R

2tν
exp

(
− (r − R)2

4tν

)
exp

(
− r R

2tν

)
I1

(
r R

2tν

)
. (64)

The corresponding iso-vorticity surfaces are circular cylinders with axisr = 0. At radius
R, the characteristic diffusion time is the ratioR2/ν. This ratio vanishes atr = 0, leading
to an additional difficulty when diffusion close to the axis is strong. Expanding on the time
discretization, it is possible for the vortex rings to cross the axis and penetrate the region
of negative radius. This difficulty can be overcome by reducing the time step or increasing
the order of the integration time scheme. Both procedures lead to an improvement in the
accuracy of the particle trajectories.

Figures 11–13 show numerical results for the one-dimensional radial problem using the
diffusion velocity model. Figure 11 show the evolution of the vorticity versus radius for two
different cutoff numbers and three different instants (ε= 0.06, ε= 0.12). The initial repre-
sentation(ri , 0i ) for the different cases are the same. The comparaison with the analytical
results (64) shows that the cutoffε= 0.12 is too large to represent correctly the vorticity
field attν/R2= 0.0225(L2 error≈ 6%), although the diffusion effect is well estimated for
larger time (L2 error≈ 2%). When the cutoff is too small (ε= 0.06), the distance between
particles is too large for larger time, resulting in an incorrect vorticity approximation near
the axis. For a large range of cutoff (ε= 0.03, ε= 0.18) the relative error estimate between
the computed and analytical results has been given for the total circulation and the impulse.
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FIG. 11. Numerical results of a pure one-dimensional axisymmetric diffusion. Evolution of vorticity (ωR2/0)
versus location of vortex particles(r/R) at three different instants in time using the Diffusion Velocity Method.
These results are compared to the exact solution (solid line). The numerical parameters are the time step1tν/R2 =
0.005 and the cutoff numberε/R= 0.06 (top) andε/R= 0.12 (bottom). The initial discretization is(rv/R, Nc) =
(0.9, 90). Then the total number of particles is 199.

The L2 error on the vorticity filed has been also plotted. The cutoff should be evaluated
using the mean distance between two neighboring particles at large time. For the axisym-
metric case this distance can be very different for particles close to the axis and particles
with larger values ofri . The cutoffε= 0.12 was selected as a good compromise to estimate
correctly the lux of vorticity on the axis(0(t)) and respect the total impulse conservation
(<1%) (Fig. 13).

The numerical results using the Strength Exchange Model have been plotted in Figs. 14
and 15. Figure 14 represents the evolution of circulation on each particles compared with
the vorticity integrated on the particle (0≈ωS). Here the particles are fixed and the initial
support of vorticity attν/R2= 0.0225 extends fromr/R= 0 to r/R= 6: this was found
necessary for a large enough computation domain for the larger time (tν/R2= 0.5225). It
must be pointed out that for this pure diffusion problem, there is no particle displacement
when using the strength exchange model so the time step does not have too much effect on
the computed solution (Fig. 15).

Both solutions are in good agreement with the exact solution (Figs. 13 and 16). The
impulse is conserved by the strength exchange model 15 whereas a 0.3% error has been
obtained with the diffusion velocity model (Fig. 12).
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FIG. 12. Error on the impulse (top), the circulation (middle), and the normL2 on the vorticity field (bottom)
versus time for different cutoff numberε using the Diffusion Velocity Model. The over parameters are the same
as in Fig. 11.

In order to confirm that these properties still hold for 2D axisymmetric flows, the pure
diffusion of a vortex core has been considered using the diffusion velocity model. The
numerical results are plotted in Figs. 17 and 18. The extension of the vorticity domain
(Fig. 17) is illustrated by the evolution at three different times of the position of the particles.
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FIG. 13. Numerical results of a pure one-dimensional axisymmetric diffusion using the Diffusion Velocity
Model. Evolution of the total circulation (0(t̄)/00) and the impulse(I (t̄)/I0) versus time(t̄). These results
are compared with the exact solution. The cutoff numberε= 0.12 and the other parameters are the same as in
Fig. 11.

FIG. 14. Numerical results of a pure one-dimensional axisymmetric diffusion. Evolution of circulation on
each particle (0i /00) versus location (r/R) for three different instants in time using the Green’s Function Method.
The time step is1tν/R2 = 0.005 and 199 particles are distributed fromr/R= 0 to r/R= 6. The circulation on
each particle is compared with the analytical vorticity integrated on the support of the particle≈ω(r i )1yi .
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FIG. 15. Error on the impulse (top), the circulation (middle), and the normL2 on thecirculationfield (bottom)
versus time for a different time step using the Green’s Function Method. The over parameters are the same as in
Fig. 14.

There is a good agreement with the exact solution. The error for the circulation and the total
impulse is arround 1% and theL2 error on the vorticity field is less than 0.1%.

5.3. The Viscous Vortex Ring Problem

For the Navier–Stokes problem solved in this section, only the diffusion velocity model
has been computed using the diffusion velocity model. A lot of work has been done with
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FIG. 16. Numerical results of a pure one-dimensional axisymmetric diffusion using the Green’s Function
Method. Evolution of the circulation(0(t̄)/00) and the impulse (I (t̄)/I0) versus time(t̄). These results are
compared to the exact solution.

the vortex ring problem since the Helmholtz 1858 paper. Explicit solutions have been
obtained for the steady inviscid case with various core vorticity distribution [10]. The
viscous unsteady case has been defined (Tung and Ting [28] and Saffman [25]). Using
asymptotic methods on the energy argument, they obtained an explicit formula for the self-
induced velocity decay due to vorticity diffusion. For a Gaussian core vorticity distribution
(58) and as long as the core radiusσ(t)=√4νt remains small compared to the core radius
r0 this velocity is

Uzc= dzc

dt
= 00

4πr0

{
log

(
8r0

σ(t)

)
− 0.558

}
. (65)

The numerical self-induced velocity can still be computed with formula (53). Equation
(58) is used to define the initial particles distribution. The vortex core at different time steps
is plotted in Fig. 19. The ring self-induced velocity is compared to the asymptotic solution
of Saffman [25] in Fig. 20, which shows that the difference between the two predictions is
less than 0.7%.

For intermediate Reynolds number (Re=0/ν) the convection and diffusion terms in
Navier–Stokes equations are of equal magnitude. Figures 21 and 22 show the vorticity
field and the position of the particles forRe= 500. This initial condition is obtained at
t̄ = t0/R2= 11.15. Equation (25) has been used to derive the initial distribution of vorticity
in the core.

The evolution of the vorticity field with time could be compared with the computations
of Stanawayet al. [27] which use similar initial conditions. The entrainment and wake
formation phase defined by Shariff and Leonard [26] are presented here. According to the
“Saffman diffusion process” (pure core spreading) the volume of the core increases with
time due to the entrainment of external fluid (Fig. 22). But it’s only in the later results
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FIG. 17. Numerical results of the pure diffusion of an axisymmetric vortex core. Position of particles at three
instants in time. The initial distribution of vorticity is gaussian (Eq. (25)) and the initial condition is obtained at
tν/R2 = 0.03.(rv, Np, Nc) = (0.9, 4, 80) (12971 particles),ε = 0.12, andδtν/R2 = 0.0015.
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FIG. 18. Vorticty distribution along ther axis forz= 0 at different instants in time (top). Error on the impulse,
the circulation, and the normL2 on the vorticity field versus time using the Diffusion Velocity Model (bottom).
The numerical parameters are the same as in Fig. 17.

that the wake formation phase can be observed as well as the formation of a tail (Fig. 21
at t̄ = 21.15) which decrease in intensity because of the diffusion effects. The formation
of the tail implies that vorticity is shed in the wake of the bubble where the intensity is
significant. For particles in the tail with small circulation (there is no significant isovalue
of vorticity in this region), the fluid convection is not a dominant effect and their motion is
mainly governed by diffusion. At this stage it can be expected that dissipation would appear
according to Maxworthy’s predictions [19], although it has not been taken into account in
the present work. In Fig. 23 we present the evolution of circulation and impulse versus
time for two different cutoffs:ε= 0.12 andε= 0.06. In order to ensure the quality of the
approximation ofωε at any time during the computation, the particle number has been
increased up to 12,971. In this case the local relative error on the impulse is lower than
1.5% at the end of the simulation forε= 0.06 and≈7% for ε= 0.12.

6. CONCLUSION

In this paper, we have proposed an alternative method for the discretization of external
axisymmetric flows. The two problems which have been more specifically addressed are
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FIG. 19. Location of the vortex particles in the(r, z) plane at different times:tν/R2 = 0.5 10−4, 6.5 10−4(b),
12, 5 · 10−4(c), 18.5 10−4(d). (rv, Np, Nc) = (0.04, 4, 40), δ/R = 0.0025 andε = 2δ, 1tν/R2 = 3 10−5, and
0/ν = 10.

the derivation of a so-called deterministic algorithm for diffusion and the axis boundary
conditions. Besides this, all the well known qualities of the particle method, namely vorticity
conservation and easy modelling of unbounded flows, have been preserved. A particular
problem concerning viscous flow representation by integral approximation is that the infinite

FIG. 20. Evolution of the core self induced velocity of vorticity centroid. The numerical result is compared to
the asymptotic solution of Saffman.(rv, Np, Nc) = (0.04, 4, 40), δ/R= 0.0025 andε = 2δ,1tν/R2 = 3 · 10−5,
and0/ν = 10.
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FIG. 21. Vorticity field at several instants in time forRe= 500. The initial condition is obtained at̄t =
11.15. (rv, Np, Nc) = (0.7, 4, 50), δ/R= 0.06, andε = 2δ. The time step is1t0/R2 = 0.1. The isovalue levels
are the same in all plots. The increment step is 0.02 for levels from 0.02 to 0.18 and after the levels are 0.2 to 3.2
with increment step of 0.2.

FIG. 22. Evolution of the particles position for0/ν = 500. The initial conditions arēt = 11.15, δ/R= 0.06,
andε = 2δ.
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FIG. 23. Evolution of circulation and impulse versus time for two different cutoffsε = 0.06,ε = 0.12, and
0/ν = 500.

computational domain has to be covered by the particles. The diffusion velocity method like
the random vortex method overcomes this difficulty by a constant adaptation of the particles
location to the extension of the vorticity support. The main advantage of our method relies
in the treatment of the axisymmetric diffusion equations which is resolved in a one step
procedure.

Although a lot of interesting problems can be studied within the axisymmetric flow
framework, we plan now to complete our method in two directions: the introduction of the
azimuthal component of the velocity and the introduction of turbulence models.

APPENDIX

Integral Solution for the Axisymmetric Diffusion Equation

We want to solve the diffusion problem for 3D vorticity,

∂ω

∂t
= ν

(
∂2ω

∂x2
+ ∂

2ω

∂y2
+ ∂

2ω

∂z2

)
(66)

ω(x, 0) = ωo(x)

for which an integral solution is

ω(x, t) =
∫

V
ωo(x′)

1

(4πνt)3/2
exp

(x − x′)2+ (y− y′)2+ (z− z′)2

4νt
dx′ dy′ dz′. (67)

A discrete solution using the particle discretisation can be obtained according to [5],

Äi =
∑

j

(Ä jVi −ÄiV j )
1

(4πνt)3/2
exp

(xi − xj )
2+ (yi − yj )

2+ (zi − zj )
2

4νt
+Di , (68)
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where

Äi =
∫
Pi

ω(x, t) dx dy dz

Vi =
∫
Pi

dx dy dz (69)

Di = d

dt

∫
R3

∫
Pi

ωo(x′)
1

(4πνt)3/2

× exp
(x − x′)2+ (y− y′)2+ (z− z′)2

4νt
dx′ dy′ dz′ dx dy dz.

For axisymmetric flows, the vorticity expressed in a cylindrical coordinate system reduces
to

ω = ωeθ

and satisfies the diffusion equation

∂ω

∂t
= ν

(
∂2ω

∂z2
+ ∂

2ω

∂r 2
+ 1

r

∂ω

∂r
− ω

r 2

)
.

The elementary solution for this equation is

G√4νt (r, z, r
′, z′; t) = 2πr ′

(4πνt)3/2
exp

(
− (r − r ′)2+ (z− z′)2

4νt

)
exp

(
− rr ′

2νt

)
I1

(
− rr ′

2νt

)
.

In order to account for the axisymmetric asumption, the computational domain is discretized
in a set of torusTi with sectionSi . The appliction of the previous method leads to

0i (t +1t) =
∫
Si

∑
j

∫
S j

ω(r ′, z′; t)G√4νt (r, z, r
′, z′; t) dr ′ dz′

−
∫
Si

∑
j

∫
S j

ω(r, z; t)G√4νt (r, z, r
′, z′; t) dr ′ dz′

−
∫ t+1t

t

d

dt

∫
R×R+

ω̃(r ′, z′; τ) dr ′ dz′ dτ, (70)

whereω̃ is the part of the vorticity field corresponding to the diffusion of the vorticity
initially in Si :

ω̃(r, z; t) =
∫
Si

ω(r ′, z′;1t)G√4νt (r, z, r
′, z′; t) dr ′ dz′.

The last term can be rewritten∫ t+1t

t

d

dt

∫
R×R+

ω̃(r ′, z′; τ) dr ′ dz′ dτ =
∫ t+1t

t
−ν
∫ ∞
−∞

(
∂ω̃

∂r
+ ω̃

r

)∣∣∣∣
r=0

dz dτ.



30 RIVOALEN AND HUBERSON

Using the particles approximation and the expression for ˜ω yields

0i (t +1t)

=
∑

j

0 jSiG√4ν1t (ri , zi , r j , zj ;1t)− 0iS jG√4ν1t (r j , zj , ri , zi ;1t)

+
∫ t+1t

t
ν0i (t)

∫ ∞
−∞

∂

∂r
G√4ν1t (ri , zi , r, z; τ)+ 1

r
G√4ν1t (ri , zi , r, z; τ) dz

∣∣∣∣
r=0

dτ

= 0i (t)

(
1− exp

(
− r 2

i

41tν

))
+
∑
j 6=i

(r j0 j (t)Si − ri0i (t)S j )
2π

(4π1tν)3/2

× exp

(
− (ri − r j )

2+ (zi − zj )
2

41tν

)
exp

(
− ri r j

21tν

)
I1

(
ri r j

21tν

)
.
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